Forcing properties of ideals of closed sets
نویسندگان
چکیده
With every σ-ideal I on a Polish space we associate the σ-ideal generated by closed sets in I. We study the forcing notions of Borel sets modulo the respective σ-ideals and find connections between their forcing properties. To this end, we associate to a σ-ideal on a Polish space an ideal on a countable set and show how forcing properties of the forcing depend on combinatorial properties of the ideal. For σ-ideals generated by closed sets we also study the degrees of reals added in the forcing extensions. Among corollaries of our results, we get necessary and sufficient conditions for a σ-ideal I generated by closed sets, under which every Borel function can be restricted to an I-positive Borel set on which it is either 1-1 or constant. In a futher application, we show when does a hypersmooth equivalence relation admit a Borel I-positive independent set.
منابع مشابه
Completeness results for metrized rings and lattices
The Boolean ring $B$ of measurable subsets of the unit interval, modulo sets of measure zero, has proper radical ideals (for example, ${0})$ that are closed under the natural metric, but has no prime ideal closed under that metric; hence closed radical ideals are not, in general, intersections of closed prime ideals. Moreover, $B$ is known to be complete in its metric. Togethe...
متن کاملZero sets in pointfree topology and strongly $z$-ideals
In this paper a particular case of z-ideals, called strongly z-ideal, is defined by introducing zero sets in pointfree topology. We study strongly z-ideals, their relation with z-ideals and the role of spatiality in this relation. For strongly z-ideals, we analyze prime ideals using the concept of zero sets. Moreover, it is proven that the intersection of all zero sets of a prime ideal of C(L),...
متن کاملOn lattice of basic z-ideals
For an f-ring with bounded inversion property, we show that , the set of all basic z-ideals of , partially ordered by inclusion is a bounded distributive lattice. Also, whenever is a semiprimitive ring, , the set of all basic -ideals of , partially ordered by inclusion is a bounded distributive lattice. Next, for an f-ring with bounded inversion property, we prove that is a complemented...
متن کاملSome new properties of fuzzy strongly ${{g}^{*}}$-closed sets and $delta {{g}^{*}}$-closed sets in fuzzy topological spaces
In this paper, a new class of fuzzy sets called fuzzy strongly ${{g}^{*}}$-closed sets is introduced and its properties are investigated. Moreover, we study some more properties of this type of closed spaces.
متن کاملForcing with Ideals Generated by Closed Sets
Consider the posets PI = Borel(R) \ I where I is a σ-ideal σ-generated by a projective collection of closed sets. Then the PI extension is given by a single real r of an almost minimal degree: every real s ∈ V [r] is Cohen-generic over V or
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Symb. Log.
دوره 76 شماره
صفحات -
تاریخ انتشار 2011